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Thermal Conduction in a Tangled Magnetic Field
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The suppression of thermal conduction by a static stochastic magnetic field is calculated for different
ratios of the field scale length to the collisional mean free path. The effects of magnetic trapping
are determined through a two-scale analysis and Monte Carlo particle simulations. In galaxy-cluster
cooling flows, thermal conductivity is reduced from the Spitzer value by a factor of order102 to 103.
[S0031-9007(98)05609-9]
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In many astrophysical plasmas, the electron mean fr
path l is vastly larger than the length scale at which th
resistive destruction of magnetic field is significant. It i
thus possible in some of these plasmas to develop tang
magnetic fields concentrated on a scalelB comparable to
or shorter thanl. Settings in which this can occur in-
clude the intracluster medium in clusters of galaxies [1
3] and transient stages of various astrophysical dynam
[4,5]. In this Letter we calculate the reduction of the the
mal conductivityk by a tangled magnetic field and apply
our theory to galaxy-cluster cooling flows [1,6,7]. We con
sider plasmas withlB , l as well aslB . l. We assume
that these plasmas evolve on time scales long compare
the collision time and that the electron distribution is a
most Maxwellian. These assumptions are reasonable
cooling flows given the uncertainties regarding intraclust
turbulence. For simplicity, we assume that the magne
field is static. We focus on the interplay between the sp
tial divergence of neighboring field lines [8–10] and th
trapping of electrons between magnetic mirrors [11,12
For typical intracluster parametersk is reduced from the
Spitzer value by a factor of order102 to 103, a reduction
that is substantially larger than in the case of no trappin
[8,13–16].

When the gyroradius of thermal electronsre is much
smaller thanlB andl, the magnetic field controls the mo-
tions of individual electrons. Electrons move predom
nantly along field lines, and regions of relatively stron
field act as magnetic mirrors, reflecting electrons that a
proach from regions of weaker field. The conditionsre ø

lB and re ø l are satisfied by many astrophysical plas
mas, including plasmas in which the magnetic field is to
weak to be hydrodynamically important. In a static field i
the absence of collisions, an electron’s kinetic energyE ­
mey2y2 and magnetic momentm ­ Es1 2 j2dyBsxd are
both conserved. Here,j is the electron’s pitch angleykyy,
whereyk is the component of the electron’s velocityy in
the direction of the magnetic field. A particle that start
at positionx0 with pitch anglej0 is thus reflected when
it reaches a positionx, whereBsxdyBsx0d ­ 1ys1 2 j

2
0 d.

Equivalently, a particle with givenE andm can never en-
ter a region in whichBsxd . Eym. Importantly, magnetic
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mirroring does not depend on the absolute strength of t
magnetic field, but only on the ratio of field strengths in
different regions. The field strength plays the role of
potential energy, and particles can be trapped in magne
wells. Trapping restricts an electron’s range of motion an
thus inhibits thermal conduction.

In a tangled magnetic field, the net displacementDr of
an electron that has moved a distancel along a field line is
given byDr , sDBld1y2, where the lengthDB is called the
“magnetic diffusion coefficient” [9]. In this paper we treat
the field as having a single scalelb so that each stationary
field line is a random-walk path of step lengthlb, giving
DB , lB. A single magnetic scale length may be appro
priate for cooling flows, since collisionless damping [5,17
in the intracluster medium may limit the range of scale
present in the magnetic field. If an electron’s motion alon
a field line is diffusive with one-dimensional diffusion co-
efficient Dk, then l , sDktd1y2. If the electron stays on
the same field line, thenDr , t1y4, and there is no spa-
tial diffusion of electrons [9]. However, as was shown b
Rechester and Rosenbluth [8], small motions perpendic
lar to field lines can restore the diffusive behavior of elec
trons because of the exponential divergence of neighbori
field lines. In a tangled field, the separationd between two
closely neighboring magnetic field lines increases on ave
age with distancel along either field line according to the
equation

dsld , ds0delyLK , (1)

where LK is the Kolmogorov-Lyapunov length [9]. In
general,LK depends on the spectrum of the magnetic fie
[18,19]. However, since we take the field to have only on
scalelB, LK , lB [10].

Let us consider a particle at pointP in Fig. 1 moving
towards pointQ initially along the curved solid line,
which represents a magnetic field line. Each time th
electron moves a distancelB along the field it drifts a
distance,re perpendicular to the magnetic field due to
field-strength gradients and field-line curvature. For th
moment, however, let us assume that it drifts just once
distancere from its initial field line onto a neighboring
field line. Once it starts following this new field line it
© 1998 The American Physical Society 3077
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FIG. 1. The curved solid line is a tangled magnetic field lin
The dashed lines are electron trajectories.

diverges from its initial field line according to Eq. (1). The
electron’s perpendicular distance from its initial field lin
will be ,lB after it has moved “the Rechester-Rosenblu
length” LRR, where

LRR , lB lnslByred . (2)

Because the electron drifts continuously,LRR is a slight
overestimate of the distance a particle must travel
reach a perpendicular distancelB from its initial field line.
For simplicity we will ignore this small error. After the
electron has moved a distanceLRR along the dashed line
in Fig. 1 from pointP to pointR, its subsequent motion is
not correlated with its initial field line.

In Fig. 2 we plot an idealized representation of the fie
strengthB as a function of distancel along an electron’s
trajectory between pointsP andR. If an electron is trapped
in the magnetic well between pointsP andQ, which are
assumed to be separated by a distance less thanLRR, then
the electron stays close to its initial field line and remain
trapped between pointsP and Q. It is freed only when
collisions makeEym greater than the field strength atP
or Q. Perpendicular drifts free the electron only afte
an extremely long time: in intracluster plasma the tim

l

B

P Q R

FIG. 2. Simplified plot of the field strength along the dashe
line connecting pointsP and R in Fig. 1. The horizontal
dashed lines indicate typical ranges of electron motion betwe
mirror reflections.
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required is far longer than the age of the Universe. O
the other hand, if an electron leaving pointP passes by
point Q and is reflected at pointR, then it will not return
to pointP. Instead of retracing its path, it will drift across
field lines and move along the dashed line from pointR
to point S in Fig. 1. After traveling a distanceLRR from
pointR towards pointS, the electron’s motion will become
uncorrelated from its path between pointsP andR.

We take the thermal conductivity to be approximate
equal to the spatial diffusivity of thermal electrons; a mo
complete theory in which we average over the therm
distribution will be presented in a separate paper. Let
write

k ­
D2

dt
, (3)

whereD2 is the mean-square three-dimensional displac
ment of a thermal electron during each statistically ind
pendent random step, anddt is the duration of each step
Electrons trapped between pointsP andQ in Fig. 1 take
random steps of lengthlB along the random magnetic field
but the particles retrace their steps and do not diffuse
space. In order for successive steps to be independen
single step must be considered as a displacement of at l
LRR along a field line. For purposes of numerical es
mates, we take the fundamental random step to be2LRR.
The correspondingD2 is given by

D2 ­

µ
2LRR

lB

∂
l2
B ­ 2LRRlB (4)

since moving a distance2LRR along a random field line
consists of taking2LRRylB random steps of lengthlB. The
value of dt depends upon the ratiolByl, wherel is the
collisional mean free path. We now turn to an estimate
dt for three different parameter regimes.

We first consider the collisionless limitslyLRRd ! `.
Let Ltrap be the distance an electron travels between mir
reflections. As discussed above, electrons withLtrap ,

LRR do not contribute to diffusion in the absence o
collisions. On the other hand, electrons withLtrap ¿ LRR

stream freely along the magnetic field, traveling a distan
2LRR in a time of roughly2LRRyyT , where yT is the
electron thermal speed. One can thus estimate the ther
conductivity from Eq. (3) as

k ­ fpassingyT lB , (5)

where fpassing is the fraction of particles withLtrap .

2LRR. We will present a more accurate estimate in mo
detail in a separate paper, along with calculations
fpassing as a function ofLRRylB for different probability
distributions of the random magnetic field. Equation (
may be relevant to the spatial diffusion of cosmic ra
that are only weakly scattered by small-scale magne
turbulence.

In the semicollisional limitlB ø l ø 2LRR, which is
more relevant to cooling flows, the timedt required for
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an electron to travel a distance2LRR along the field is
given by the relations2LRRd2 ­ 2Dkdt. We treat parallel
diffusion with the kinetic equation

≠f
≠t

1 jyT
≠f
≠l

2
s1 2 j2dyT

2
d ln B

dl
≠f
≠j

­
n

2
≠

≠j

∑
s1 2 j2d

≠f
≠j

∏
, (6)

wherel is distance along a field line andn is the collision
frequency [11,20]. Here we have assumed that collisio
change only an electron’s pitch anglej and that all the
electrons move at the thermal speed. An ambipolar elect
potential [not included in Eq. (6)] is set up to maintain
charge neutrality and prevent the appearance of ov
whelming currents. WhenlB ø fyj≠fy≠lj, this poten-
tial has a moderate effect on the heat flux but is too we
to significantly influence single-particle motion or the ap
proximate value ofk given by Eq. (3). We will present
calculations including the parallel electric field elsewher
For constantB, Dk ­ yT ly3, wherel ­ yT yn. For non-
constantB, we writeDk ­ uyT ly3, whereu is the frac-
tional reduction of the parallel diffusivity due to magnetic
trapping. Equation (3) can thus be rewritten

k ­ yT lu
lB

3LRR
. (7)

This is the collisional formula of Rechester and Rosenblu
[8] modified by the mirror-trapping factoru.

In the magnetized collisional limitre ø l ø lB ,

LRR there are no trapped particles, and Eq. (7) wit
u ­ 1 applies. For completeness, we note that in th
nonmagnetized collisional limitl , re electrons do not
follow field lines, andk is not given by Eq. (7) but instead
approaches the Spitzer value.

As a first step towards determiningu in Eq. (7),
we consider the idealized case in whichBsld ­ B0f1 1

a sinslylBdg for a [ s0, 1d. We solve Eq. (6) with an
asymptotic expansion ine ­ lByl and a two-scale ap-
proximation in whichf ­ fsl, Rd, whereR ­ lye2. The
distribution function to lowest order ine, denotedf0,
satisfies≠f0y≠j ­ 0 and ≠f0y≠l ­ 0. Parallel flux is
driven by≠f0y≠R. To lowest order ine,

u ­
3

4k1ygl

Z 1ys11ad

0
dw

Z 1ys11ad

w
dz

1
k
p

1 2 zgygl
,

(8)

where g ; BsldyB0 and the angled brackets denote a
average overl. Equation (8) is plotted in Fig. 3. A
different result for the reduction ofDk for infinitesimala
has been obtained through a different method by Klepa
and Ptuskin [11].

Also shown in Fig. 3 are results from Monte Carlo
particle simulations of Eq. (6) for the same periodi
magnetic field strength. We treat the Lorentz collisio
operator with the method of Shannyet al. [21]. Each
simulation follows104 particles of identical kinetic energy
for 20 collision times, andl is chosen to be2p 3 103lB.
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FIG. 3. The reduction factoru of Dk when Bsld ­ B0f1 1
a sinslylBdg, wherel is distance along a field line, andlB ø l.

ForBsld ­ B0f1 1 a sinslylBdg, electrons withEym ,

1 1 a are trapped in magnetic wells until freed by colli-
sions. These electrons bounce between reflection poin
on a time scale much shorter than the collision time an
to lowest order ine contribute nothing to diffusion along
the field. Electrons withEym . 1 1 a do contribute to
diffusion, and there is a boundary layer atEym ­ 1ys1 1

ad. The distribution functionfsl, md is continuous across
this boundary layer, but the derivative≠fy≠m undergoes a
finite jump. We will describe the boundary-layer structur
in detail elsewhere.

When a ­ 1 2 d with d ø 1, Eq. (8) yields u ­
3dy16 to lowest order ind. The large reduction inDk

when a ! 1 reflects the important role of regions of
small magnetic field. At any given point, only particles
with j .

p
1 2 BsldyBmax are able to pass over the re-

gions of maximum field strengthBmax without reflection.
In regions of smallB, the width inj space of this “passing
layer” is small, and collisions more easily scatter particle
out of the passing layer. As a result, an electron that
not initially trapped needs to travel only a fraction of its
mean free pathl before collisions scatter it onto a trapped
trajectory in thel-j plane. Even if the electron quickly
scatters back onto a passing trajectory, its direction of m
tion along the field is randomized if it stays in the well for
at least one bounce time. Thus, not only does the ma
netic well prevent trapped particles from participating in
diffusion, but it reduces the parallel diffusivity of passing
particles as well.

When the magnetic field is random, an analytic trea
ment is difficult because for some electronsLtrap , l

while for othersLtrap . l. We treat parallel diffusion
in a random field with the use of Monte Carlo particle
3079
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FIG. 4. Numerical results for the reduction factoru of Dk for
two different probability distribution functions of the random
magnetic field.

simulations of Eq. (6). We take the field strengthBsld to
be given by

Bsld ­
i­NX
i­1

aie
2sl2lid2y2, (9)

whereai andli are random numbers uniformly distributed
on the intervals0 , ai , 1 and 2L , li , L. The
length of the simulation domain2L is chosen so that elec-
trons do not leave the domain during the simulation. T
evaluate Eq. (9) to machine accuracy at any givenl, it is
sufficient to include in the sum only those terms for whic
jl 2 lij , 6. IncreasingNyL changes the probability dis-
tribution of jBj, reducing the fractional variations in the
field strength and the effectiveness of particle trapping.
measure of the fractional variations injBj is kB2lykjBjl2,
where the angled brackets indicate an average overl. It
should be emphasized thatkjBjl is not the strength of the
mean field vector. By assuming a single magnetic sca
length lB, we have implicitly taken the mean field vector
to be small. The reduction factoru of Dk is plotted in
Fig. 4 as a function oflByl for two different values of
N , one of which corresponds tokB2lykjBjl2 ­ 1.06, the
other of which corresponds tokB2lykjBjl2 ­ 1.21. Nu-
merically,lB is taken to bekjBjlykjdBydljl. Each simula-
tion follows 4 3 104 particles of identical kinetic energy
for 40 collision times. Increasingn reduces the effects
of trapping, thereby increasingu. However, increasingn
reducesDk ­ uy

2
T y3n since collisions inhibit the flow of

particles along the field.
In conclusion, let us consider a numerical examp

relevant to intracluster plasma. In a1026 G field, thermal
3080
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electrons in a108 K plasma have gyroradii of2.2 3

108 cm. TakinglB ­ 4.0 kpc, we find from Eq. (2) that
LRR ­ 32lB. For l ­ 20 kpc and kB2lykjBjl2 ­ 1.21,
the Monte Carlo particle simulations of Fig. 4 yieldu ­
0.33. Equation (7) then implies thatk ­ yT ly280. For
a nonmagnetized plasma, Eq. (3) yields the approxima
Spitzer thermal conductivitykS ­ yT l. For characteristic
intracluster parameters,k is thus on the order of 1y300 of
the Spitzer value. Iflbyl remains constant asl decreases
towards a cluster’s center, then a similar reduction o
k occurs within the cluster’s core, consistent with the
neglect of thermal conduction in homogeneous cooling
flow models of intracluster plasma [1,6,7].
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