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Thermal Conduction in a Tangled Magnetic Field
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The suppression of thermal conduction by a static stochastic magnetic field is calculated for different
ratios of the field scale length to the collisional mean free path. The effects of magnetic trapping
are determined through a two-scale analysis and Monte Carlo particle simulations. In galaxy-cluster
cooling flows, thermal conductivity is reduced from the Spitzer value by a factor of afdeto 10°.
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In many astrophysical plasmas, the electron mean fremirroring does not depend on the absolute strength of the
path A is vastly larger than the length scale at which themagnetic field, but only on the ratio of field strengths in
resistive destruction of magnetic field is significant. It isdifferent regions. The field strength plays the role of a
thus possible in some of these plasmas to develop tanglgabtential energy, and particles can be trapped in magnetic
magnetic fields concentrated on a schlecomparable to wells. Trapping restricts an electron’s range of motion and
or shorter thanA. Settings in which this can occur in- thus inhibits thermal conduction.
clude the intracluster medium in clusters of galaxies [1— In a tangled magnetic field, the net displacem&ntof
3] and transient stages of various astrophysical dynamaan electron that has moved a distan@dong a field line is
[4,5]. In this Letter we calculate the reduction of the ther-given byAr ~ (Dgl)'/2, where the lengttD; is called the
mal conductivityx by a tangled magnetic field and apply “magnetic diffusion coefficient” [9]. In this paper we treat
our theory to galaxy-cluster cooling flows [1,6,7]. We con-the field as having a single scdleso that each stationary
sider plasmas witlhy < A aswell adg > A. We assume field line is a random-walk path of step length giving
that these plasmas evolve on time scales long compared oz ~ I3. A single magnetic scale length may be appro-
the collision time and that the electron distribution is al-priate for cooling flows, since collisionless damping [5,17]
most Maxwellian. These assumptions are reasonable fon the intracluster medium may limit the range of scales
cooling flows given the uncertainties regarding intraclustepresent in the magnetic field. If an electron’s motion along
turbulence. For simplicity, we assume that the magneti@ field line is diffusive with one-dimensional diffusion co-
field is static. We focus on the interplay between the spaefficient Dy, thenl ~ (Dyt)'/2. If the electron stays on
tial divergence of neighboring field lines [8—10] and thethe same field line, theAr ~ ¢'/4, and there is no spa-
trapping of electrons between magnetic mirrors [11,12]tial diffusion of electrons [9]. However, as was shown by
For typical intracluster parameteksis reduced from the Rechester and Rosenbluth [8], small motions perpendicu-
Spitzer value by a factor of ordéd? to 10°, a reduction lar to field lines can restore the diffusive behavior of elec-
that is substantially larger than in the case of no trappingrons because of the exponential divergence of neighboring
[8,13-186]. field lines. In atangled field, the separatidbetween two

When the gyroradius of thermal electrops is much  closely neighboring magnetic field lines increases on aver-
smaller tha/z and A, the magnetic field controls the mo- age with distanceé along either field line according to the
tions of individual electrons. Electrons move predomi-equation
nantly along field lines, and regions of relatively strong A1) ~ d(0)e!/Lx (1)
field act as magnetic mirrors, reflecting electrons that ap- ’
proach from regions of weaker field. The conditigns<«  where L is the Kolmogorov-Lyapunov length [9]. In
Ig andp, < A are satisfied by many astrophysical plas-general Lk depends on the spectrum of the magnetic field
mas, including plasmas in which the magnetic field is tod18,19]. However, since we take the field to have only one
weak to be hydrodynamically important. In a static field inscalelp, Lx ~ I3 [10].
the absence of collisions, an electron’s kinetic enéfgy Let us consider a particle at poiftin Fig. 1 moving
m,v?/2 and magnetic moment = E(1 — £2)/B(x) are  towards pointQ initially along the curved solid line,
both conserved. Heré,is the electron’s pitch angle;/v,  which represents a magnetic field line. Each time the
wherev is the component of the electron’s velocityin ~ electron moves a distandg along the field it drifts a
the direction of the magnetic field. A particle that startsdistance~p, perpendicular to the magnetic field due to
at positionxy with pitch angle&, is thus reflected when field-strength gradients and field-line curvature. For the
it reaches a position, whereB(x)/B(xo) = 1/(1 — £&). moment, however, let us assume that it drifts just once a
Equivalently, a particle with gived andu can never en- distancep, from its initial field line onto a neighboring
ter a region in whictB(x) > E/u. Importantly, magnetic field line. Once it starts following this new field line it
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required is far longer than the age of the Universe. On
the other hand, if an electron leaving poiRtpasses by
point Q and is reflected at poirR, then it will not return

to pointP. Instead of retracing its path, it will drift across
field lines and move along the dashed line from pdint
to pointS in Fig. 1. After traveling a distancEgrg from
point R towards pointS, the electron’s motion will become
uncorrelated from its path between poiftsandR.

We take the thermal conductivity to be approximately
equal to the spatial diffusivity of thermal electrons; a more
complete theory in which we average over the thermal
distribution will be presented in a separate paper. Let us
write

AZ

=5 )

FIG. 1. The curved solid line is a tangled magnetic field line. K

The dashed lines are electron trajectories.
whereA? is the mean-square three-dimensional displace-

diverges from its initial field line according to Eq. (1). The ment of a thermal electron during each statistically inde-
electron’s perpendicular distance from its initial field line Pendent random step, ad is the duration of each step.
will be ~1I5 after it has moved “the Rechester-RosenbluthElectrons trapped between poimtsand Q in Fig. 1 take

length” Lgg, where random steps of lengtlz along the random magnetic field,
Leg ~ 15In(ls/p.) 2 but the particles retrace their steps and do not diffuse in
RR ™ LB TILB/ Pe) - space. In order for successive steps to be independent, a

Because the electron drifts continuoushkr is a slight  single step must be considered as a displacement of at least
overestimate of the distance a particle must travel tg.z along a field line. For purposes of numerical esti-
reach a perpendicular distangefrom its initial field line.  mates, we take the fundamental random step talhg;.
For simplicity we will ignore this small error. After the The corresponding? is given by
electron has moved a distantgr along the dashed line
in Fig. 1 from pointP to pointR, its subsequent motion is A2 — <2LRR>I§ = 2Lgrls (4)
not correlated with its initial field line. Ip

In Fig. 2 we plot an idealized representation of the field
strengthB as a function of distanckalong an electron’s
trajectory between poin® andR. If an electron is trapped
in the magnetic well between pointsand Q, which are llisional f h W . ¢
assumed to be separated by a distance lesslthanthen ((;o f'S'Oﬂa m((je'?fn ree path. We now turn to an estimate o
the electron stays close to its initial field line and remains tv\(/)r gc reie ' Q&enttﬁararTlgtgr rleglrr:_es.h I -
trapped between point®8 and 0. It is freed only when LetLet Irsbectzgsfljiset;ncz 2?1 (Ieslle(z:rt]r(e)istrggls{ bgﬁvzle_e)n rﬁirror

g . .

collisions makeE/u greater than the field strength At reflectigns. As discussed above, electrons vith, <

or Q. Perpendicular drifts free the electron only afterLRR do not contribute to diffusion in the absence of

an extremely long time: in intracluster plasma the time“S® .
y 9 P collisions. On the other hand, electrons with,, > Lgrgr

stream freely along the magnetic field, traveling a distance
B, 2Lgr in a time of roughly2Lgr /vy, wherevr is the
electron thermal speed. One can thus estimate the thermal
conductivity from Eq. (3) as

since moving a distanceLgr along a random field line
consists of takin@Lyr /I random steps of lengthz. The
value of 5t depends upon the ratig/A, where A is the

K = fpassing V!B s (5)

where frasing IS the fraction of particles withl ., >
2Lgrr. We will present a more accurate estimate in more
detail in a separate paper, along with calculations of
frassing @S a function ofLrr /5 for different probability

/ / / = | distributions of the random magnetic field. Equation (5)
P Q R may be relevant to the spatial diffusion of cosmic rays
that are only weakly scattered by small-scale magnetic

FIG. 2. Simplified plot of the field strength along the dashed bul
line connecting pointsP and R in Fig. 1. The horizontal turbulence. o L L

dashed lines indicate typical ranges of electron motion between In the semicollisional limity < A < 2Lgg, Which is
mirror reflections. more relevant to cooling flows, the tim& required for
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an electron to travel a distan@gr along the field is 7 L I L L
given by the relatiol2Lgrg)? = 2D 6t. We treat parallel
diffusion with the kinetic equation

) I solid line —— Z2-—scale analysis -
ﬁ+fvrﬁ—(l &)vr dInB of 08 | | '
ot al 2 dl d¢ L X —— particle simulations
v 0 af i
=—-—|0-¢ —}, 6
clo-aX] e of

wherel! is distance along a field line andis the collision L
frequency [11,20]. Here we have assumed that collision -
change only an electron’s pitch angfeand that all the 0.4 |-
electrons move at the thermal speed. An ambipolar electri |
potential [not included in Eq. (6)] is set up to maintain L
charge neutrality and prevent the appearance of ove 0.2 -
whelming currents. Wheniy < f/|af/dl|, this poten- i

1 11 ‘ L L 1 \ i 1 1 ‘

tial has a moderate effect on the heat flux but is too wea

to significantly influence single-particle motion or the ap- 0
proximate value ok given by Eqg. (3). We will present
calculations including the parallel electric field elsewhere.

For constanB, D = vrA/3, whereA = vr/v. Fornon- X

constantB, we write Dy = 6vrA/3, wheref is the frac-  FiG. 3. The reduction factos of Dy when B(l) = Bo[1 +
tional reduction of the parallel diffusivity due to magnetic « sin(l/15)], wherel is distance along a field line, arig < A.
trapping. Equation (3) can thus be rewritten

\ 1 1 L ‘

L ey e ey ey ey

0 0.2 0.4 0.6 0.8 1

K = vrAf 3£B . (7) ForB(I) = By[l + asin(l/I)], electrons withE / u <

. . RR 1 + « are trapped in magnetic wells until freed by colli-
This is the collisional formula of Rechester and Rosenbluthjons  These electrons bounce between reflection points
[8] modified by the mirror-trapping factd. on a time scale much shorter than the collision time and

In the magnetized collisional limip, < A < Iz < 4 |owest order ine contribute nothing to diffusion along
Lrr there are no trapped particles, and Eq. (7) withpe field. Electrons wittE/ > 1 + « do contribute to
6 = 1 applies. For completeness, we note that in th&jifysion, and there is a boundary layer@tuy = 1/(1 +
nonmagnetized collisional limid < p, electrons do not ) -~ The distribution functiorf (Z, x) is continuous across
follow field lines, andx is not given by Eq. (7) butinstead pig boundary layer, but the derivatiag /o u undergoes a

approaches the Spitzer value. o finite jump. We will describe the boundary-layer structure
As a first step towards determining in Ed. (7), in detail elsewhere.

we consider the idealized case in whisl) = Bo[1 + When a = 1 — 6 with 8 < 1, Eq. (8) vields =
asin(l/lp)] for @ € (0,1). We solve Eq. (6) with an 35 /16 1o lowest order ins. The large reduction i
asymptotic expansion ik = /3/A and a tvvo—s<2:ale 8P~ when a — 1 reflects the important role of regions of
proximation in whichf = f(/,R), whereR = [/e*. The g magnetic field. At any given point, only particles
dISFrlbutlon function to lowest order i, denotedf()., with ¢ > M= B0D/Bo B(I)/Bma, are able to pass over the re-
satisfiesd fo/9& = 0 and dfo/al = 0. Parallel flux is gions of maximum field strengtB... without reflection.
driven bydfo/dR. To lowest order ire, In regions of smalB, the width in& space of this “passing
3 fl/(Ha) p [1/(1+a) J 1 layer” is small, and collisions more easily scatter particles
w T\ out of the passing layer. As a result, an electron that is
K1/g) Jo " T =z8/8) 3 not initially trapped needs to travel only a fraction of its
(8) mean free patiA before collisions scatter it onto a trapped
where g = B(l)/By and the angled brackets denote antrajectory in thel-¢ plane. Even if the electron quickly
average overl. Equation (8) is plotted in Fig. 3. A scatters back onto a passing trajectory, its direction of mo-
different result for the reduction db; for infinitesimale  tion along the field is randomized if it stays in the well for
has been obtained through a different method by Klepacht least one bounce time. Thus, not only does the mag-
and Ptuskin [11]. netic well prevent trapped particles from participating in
Also shown in Fig. 3 are results from Monte Carlo diffusion, but it reduces the parallel diffusivity of passing
particle simulations of Eq. (6) for the same periodicparticles as well.
magnetic field strength. We treat the Lorentz collision When the magnetic field is random, an analytic treat-
operator with the method of Shanmet al.[21]. Each ment is difficult because for some electrohg,, < A
simulation follows10* particles of identical kinetic energy while for othersLy,, > A. We treat parallel diffusion
for 20 collision times, anad is chosen to b&z X 103/;. in a random field with the use of Monte Carlo particle
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FIG. 4. Numerical results for the reduction factbof D) for
two different probability distribution functions of the random
magnetic field.

simulations of Eq. (6). We take the field strendifi) to
be given by

i=N
B(l) = Y aje 702,

i=1

(9)

whereqa; andl; are random numbers uniformly distributed
on the intervalsO < a; <1 and —L <[; < L. The
length of the simulation domai2L is chosen so that elec-

trons do not leave the domain during the simulation. To

evaluate Eg. (9) to machine accuracy at any giveit is

electrons in al0® K plasma have gyroradii o2.2 X

108 cm. Taking/z = 4.0 kpc, we find from Eq. (2) that
Lrr = 3213. For A = 20 kpc and(B?)/{|B|)*> = 1.21,

the Monte Carlo particle simulations of Fig. 4 yiefd=
0.33. Equation (7) then implies that = v7A/280. For

a nonmagnetized plasma, Eq. (3) yields the approximate
Spitzer thermal conductivitys = vy A. For characteristic
intracluster parameters, is thus on the order of /B00 of

the Spitzer value. If,/A remains constant asdecreases
towards a cluster's center, then a similar reduction of
k occurs within the cluster's core, consistent with the
neglect of thermal conduction in homogeneous cooling-
flow models of intracluster plasma [1,6,7].
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